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Abstract: Tropical dry forest is vulnerable to increased climate variability with more frequent and
severe storms. Studies of hurricane impact on tropical dry forest often focused on individual tree traits.
How trees in tropical dry forests work together to combat wind damage is still unclear. To address this,
we integrated ground-observed ecosystem structure from National Ecological Observation Network
(NEON) with airborne-LiDAR images and analyzed resistance in forest structure of Guánica dry
forest in Puerto Rico to major hurricanes in 2017 at the forest-stand level. Using each plot instead
of the individual tree as the base unit, we regressed mean changes in stem height and fractions of
lost or damaged stems at 15 plots on mean stem diameter, mean and standard deviation of stem
height, stem density, and topography. Meanwhile, using the LiDAR-derived canopy heights, we
compared the changes in canopy height before and after the hurricanes and regressed spatially the
canopy height change on prior-hurricane tree cover, canopy height, and rugosity. We found that the
damage was small in places with high stem density or high tree cover. Ground-observed damage
in terms of height reduction significantly increased with the standard deviation of stem height,
an index of roughness, but decreased with the mean stem diameter of the plots. LiDAR-detected
damage in terms of reduction in canopy height was also found to decrease with tree cover and mean
canopy height when the canopy height was small or moderate but increase with the rugosity. The
fraction of lost stems significantly decreased with the stem density, and the fraction of damaged
stems significantly increased with the roughness and the plot elevation. The collective parameters of
forest stand quantified from ground-observation and LiDAR, such as stem density, tree cover, and
canopy roughness or rugosity, highlighted mutual supports of trees and played important roles in
resisting damages to the tropical dry forest during major hurricanes.

Keywords: major hurricane; tropical dry forest; canopy density; surface roughness; canopy height
model; LiDAR; Caribbean

1. Introduction

Tropical and subtropical dry forest accounts for 42% of the global tropical and sub-
tropical forest cover [1] and spans climate regions with annual rainfall ranging from 250 to
2000 mm, annual mean bio-temperature greater than 17 ◦C, and the annual ratio of poten-
tial evapotranspiration to precipitation greater than 1 [2]. The C stock of tropical dry forest
accounts for 8–9% of the global estimate, yet the net primary production was 620 g C m−2,
which is only lower than that of the tropical wet forest [3,4]. There are always 2–6 months
of dry season, and the water-limited nature makes tropical dry forests especially sensitive
to climate variability and extreme climate events such as drought and storms [5–8].

The structure of the tropical dry forest is substantially different from that of the tropical
wet and moist forests. The dry forest has, in general, lower tree richness than wet forest,
and the low diversity is especially found in island forests [1]. According to the negative
exponential relationship between root to shoot ratio and annual rainfall [9], the tropical
dry forest has a larger root:shoot ratio (0.57–0.71) than moist and wet forests (0.17–0.35) to
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facilitate water and nutrient uptake [10], which might help resist root–soil failure during
strong winds [11,12]. Limited by the hydraulic transporting capacity, the tropical dry
forest also has a smaller stem height to diameter ratio than wet and moist forests have.
For diameters in the ranges of 10–20 cm and 21–40 cm, the mean heights were 11.8 and
18.1 m for the tropical dry forest, 14.7 and 23.3 m for the moist forest, and 16.7 and 25.6 m
for the wet forest, respectively [13]. Lower diversity, larger root:shoot ratio, and lower
height:diameter (taper, lower slenderness) ratio make tropical dry forests differ from wet
or moist forests in response and resistance to tropical storms.

Resistance to tropical storms and recovery of the tropical dry forest after disturbance
also depend on other structural and functional traits. For example, wood density correlates
to rupture modulus and elasticity modulus, and high wood density, associating with
mechanical strength, might indicate less likely the wind snap (e.g., trunk breakage) but
more likely the windthrown (e.g., uprooting) [14]. A tree species with a greater specific
leaf area (SLA) may intercept more wind drag forces to rupture the stems and branches;
however, thinner leaves are also easily torn by the wind and may be more advantageous to
avoid damage to branches and trunks. On the other hand, a species with a smaller SLA has
a longer leaf life span, stronger leaves, stronger ties with branches and twigs, and less likely
to shed its leaves [15]. Since wind-induced load can be increased 2–3 times with foliage,
compared to that without foliage, mechanically strong leaves make them hard to shed and
may lead to severe damage to branches and trunks during storms [16]. After hurricane
disturbance, tree species with greater SLA have a higher relative growth rate [17]. SLA and
maximum height are positively associated with resprouting and recovery, whereas wood
density and slenderness are negatively associated with resprouting and recovery [7].

Recent studies emphasized the important role of stand-level parameters in wind
damages to forests [11,18]. Hart et al. [18] found that the random forest models on wind
damage to forests provided high accuracy and the discriminatory power remained high
with the removal of individual-level characteristics; however, the accuracy and the dis-
criminatory power would be lost if the stand-level information is removed. Compared
to a single-tree situation, trees in a closed forest stand provide sheltering effect and/or
mechanically mutual supports during wind disturbance [11]. Moore and Lin [19] reported
that stand density and height:diameter ratio are the most important factors associated with
wind damage in terms of basal area loss. Compared to dense stands, winds inside a stand
with widely spaced trees are higher [11]. Forest structure also affects its vulnerability to
wind damage [12]. By analyzing the impacts of Typhoon Songda in northern Japan using
the random forest algorithm, Morimoto et al. [20] reported that the natural mixed forest
stand with a complex structure was less vulnerable to the catastrophic wind compared to
the Abies plantation with a simple structure.

Monitoring wind damage in forests is mostly based on small-scale ground observa-
tions [7,21,22] and large-scale optical remote-sensed images [23,24]. Based on the fused
vegetation index from Sentinel-2 and Landsat-8, the dynamic of forest greenness, indicat-
ing ecosystem functions, was assessed to explore how topography, drainage capability,
and legacy of drought differentiated tropical ecosystem response to and recovery from
major hurricanes [24]. Compared to ecosystem functions, ecosystem structures showed
much slower recovery after hurricanes [22] and divergence [25]; thus, structural changes
are better indicators of hurricane impacts in the short to long term. However, structural
changes especially at scales larger than plots are still rare in existing studies. The recent
rapid advance in remote sensing technology, particularly LiDAR, provides us necessary
data and metrics such as canopy height, cover, or rugosity [26,27] to monitor structural
changes at a larger scale and to explore underlying mechanisms of forests in response
to storms.

The Caribbean region is prone to tropical storms. In September 2017, two successive
major hurricanes impacted the region [24,28]. Recent research mostly focused on the impact
of hurricanes on windward wet and moist forests [21], while the study of the impact on
the leeward tropical dry forest is largely left untouched. On the other hand, compared to
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the trait-based individual-level studies mentioned above, the quantitative roles of stand-
level parameters of tropical dry forest, such as stem density and canopy roughness, in the
ecosystem resistance to tropical storms remain unclear.

This study aims to explore how the two major hurricanes impact a tropical dry forest
at stand level by integrating damages to trees based on the National Ecological Observation
Network (NEON) ground observations with changes in canopy height within the forest
via the airborne LiDAR observations. We associated the impact of the hurricanes to the
ground-measured stem density and stem diameter, unevenness of the stem height, and
topography such as elevation, aspect, or topographic position, as well as to the LiDAR-
sensed canopy height, tree cover, and rugosity. We hypothesized that more unevenness
of the canopy or rugosity and higher plot elevation tend to bring more damage, whereas
higher tree cover, higher stem density, and larger stem diameter tend to resist the damage.
On the other hand, the rain brought by hurricanes may alleviate the drought stress during
the years before the storms.

2. Materials and Methods
2.1. Study Area

NEON Guánica site (−66.86◦W, 17.97◦N, Figure 1) is located within the dry-forest life
zone in southwest Puerto Rico near the coast of the Caribbean Sea. The site has a mean
annual precipitation of 860 mm and a mean annual temperature of 25 ◦C [1]. Guánica
dry forest was designated as a state forest in 1919 and a UNESCO International Biosphere
Reserve in 1981. In 2017, Hurricane Irma passed by the tropical island Puerto Rico on
6 September with the sustaining wind speed of 298 km h−1, and Hurricane Maria traversed
the island on 20 September with 249 km h−1 at its landfall, incurring enormous damage to
the tropical ecosystem over the island (Figure 1). Prior to the two hurricanes, Puerto Rico
experienced a severe drought in 2014–2016 with the island-wide water rationing lasting
for months [29]. Historically, Hurricane Georges in 1998 and Hurricane San Felipe in 1928
affected the structures of the Guánica dry forest [30].

2.2. NEON Plot Ground Data Analysis

NEON started the forest structure observation in 2015 at scattered plots (Figure 1).
The 20 NEON tower plots are distributed close to the instrument tower, and each plot is
40 m × 40 m with two subplots sampled, each of which is 20 m × 20 m. The 20 distributed
plots of 20 m × 20 m each are scattered in the farther distance but around the tower. We
acquired the forest structure observations from the NEON sites [31], and the data showed
that among the 40 plots, only 10 distributed and 5 tower plots had measurements both
before and after the hurricanes. The distribution of these plots almost covered all the
elevation ranges from lowland, mid slope, to top of the hill (Figure 1, Table 1).

NEON woody vegetation structural measurement includes stem height, diameter
(mostly DBH ≥ 10 cm, diameter at breast height, https://data.neonscience.org/data-
products/DP1.10098.001, accessed on 8 June 2021), crown diameter, etc. For this particular
site with small trees and dense canopy of the dry forest, i.e., greater than 3000 stems per
hectare, stem diameter ≥ 0.8 cm were measured. Among these metrics, stem height and
diameter were mostly measured.

https://data.neonscience.org/data-products/DP1.10098.001
https://data.neonscience.org/data-products/DP1.10098.001
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Figure 1. Location of NEON Guánica dry forest site (upper panel). Red and blue lines indicate the 
paths of Hurricane Maria and Hurricane Irma in September 2017, respectively. Guánica dry forest 
site is located in the southwest of the island. Distribution of 20 NEON tower plots (blue dots) and 
20 distributed plots (red dots) on top of the elevation map (lower panel). Squares are plots that have 
observations both before and after the hurricanes in 2017. 
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For each plot, we selected those individual stems labeled with “Live” as the plant 
status and stem height measured before the hurricanes and compared with their plant 
status and stem height after the hurricanes. We then analyzed these changes in plant sta-
tus and stem height for each of the 15 plots and explored the underlying mechanisms that 
lead to the changes. The plant status after the hurricanes can be grouped into three cate-
gories: “Live”, “Lost”, and “Damaged”, and the latter two reflect a change in status. The 
“Lost” category included plant status marked as “Standing dead”, “Removed”, “Lost, fate 

Figure 1. Location of NEON Guánica dry forest site (upper panel). Red and blue lines indicate the
paths of Hurricane Maria and Hurricane Irma in September 2017, respectively. Guánica dry forest
site is located in the southwest of the island. Distribution of 20 NEON tower plots (blue dots) and
20 distributed plots (red dots) on top of the elevation map (lower panel). Squares are plots that have
observations both before and after the hurricanes in 2017.
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Table 1. The 15 plots used for vegetation structural change assessment before and after the major
hurricanes in September 2017.

Plot ID Plot Type Time Before Time After Altitude (m)

GUAN_002 Distribute August 2015 January 2018 89.1
GUAN_003 Distribute April 2016 December 2017 182.9
GUAN_004 Distribute February 2016 January 2018 133.5
GUAN_008 Distribute March–April 2016 January 2018 65.8
GUAN_009 Distribute May 2016 January 2018 116.5
GUAN_010 Distribute May 2016 January 2018 177.6
GUAN_011 Distribute May 2016 February 2018 201.2
GUAN_015 Distribute April 2016 December 2017 207.8
GUAN_018 Distribute February 2016 January 2018 162.6
GUAN_019 Distribute May–June 2016 February 2018 131.7
GUAN_042 Tower April 2017 February 2018 146.9
GUAN_043 Tower April 2017 February 2018 115.9
GUAN_044 Tower April 2017 February 2018 147.5
GUAN_045 Tower April 2017 February 2018 145.3
GUAN_046 Tower March 2017 February 2018 168.0

For each plot, we selected those individual stems labeled with “Live” as the plant
status and stem height measured before the hurricanes and compared with their plant
status and stem height after the hurricanes. We then analyzed these changes in plant
status and stem height for each of the 15 plots and explored the underlying mechanisms
that lead to the changes. The plant status after the hurricanes can be grouped into three
categories: “Live”, “Lost”, and “Damaged”, and the latter two reflect a change in status.
The “Lost” category included plant status marked as “Standing dead”, “Removed”, “Lost,
fate unknown”, “Dead, broken bole”, and “Lost, presumed dead”; and the “Damaged”
category included those marked as “Live, broken bole”, “Live, physically damaged”, and
“Live, other damage”. The five tower plots were measured in early 2017 and early 2018
(Table 1). Nine out of the ten distributed plots were measured in 2016 and the end of 2017
to early 2018, and the remaining one (GUAN_0002) was measured in 2015 and early 2018.
We assume the comparison between the measurements before and after is mostly caused
by the major hurricanes in September 2017, but to a less extent, by the growth after the
pulse rainfall brought by the hurricanes.

Multiple and logistic (quasibinomial) regressions were applied to explore the possible
factors that contribute to the loss and/or damage of stems and the change in stem height.
Quasibinomial is often used to eliminate the overdispersion of a generalized linear model.
The explanatory variables are plot elevation and topographic position, the density of
stems, the mean and standard deviation of stem height, and mean stem diameter. The
topographic position index, representing the topographic position, was calculated as the
elevation minus the average elevation of a circular neighborhood with a radius of five cells.

2.3. Canopy Height Change by Airborne Light Detection and Ranging (LiDAR)

Changes in canopy height were examined with the LiDAR-derived canopy height
model (CHM). The NASA G-LiHT mission collected the LiDAR images along a few tran-
sects across the Guánica dry forest on 8 March 2017 [32], and the NEON Airborne Observa-
tion Platform (AOP) collected the LiDAR images covering the whole site on 28 May 2018.
We selected the transect of PR_8March_2017_45_46, which crosses the forest and spans all
the elevation range (Figure 2). The section of the transect within the NEON Guánica site was
chosen for further analyses. The vertical and horizontal accuracies of both NEON [33,34]
and G-LiHT images (glihtdata.gsfc.nasa.gov/, accessed on 8 June 2021) are within 1 m.
Aside from the CHM images, we also used the digital surface model (DSM), digital terrain
model (DTM), topographical slope and aspect, and rugosity based on the DSM. All images
have a spatial resolution of 1 m. We obtained the data from the NEON data portal with the

glihtdata.gsfc.nasa.gov/
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“neonUtilities” R Package and from the G-LiHT site (glihtdata.gsfc.nasa.gov/, accessed on
8 June 2021).
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Figure 2. Location of the transect of “PR_8March2017_45_46” flew by the NASA G-LiHT, about 7 km
long and 280 m wide. The greenness indicates the canopy height measured before the hurricanes.

Both the NEON and NASA CHM were calibrated with the ground-measured stem
height of the NEON plots located within the transect before performing the statistical
comparison. Stem heights measured in early 2017 and early 2018 (from 1 January to
30 May) were used to calibrate the CHM of G-LiHT before the hurricanes and the CHM
of NEON after the hurricanes, respectively. Changes in canopy height were obtained by
subtracting the calibrated CHM before the hurricanes from the calibrated CHM after the
hurricanes. We also calculated the tree cover as the proportion of pixels with canopy height
above 2 m. Changes in canopy height, together with the prior-hurricane CHM, DSM, slope,
aspect, tree cover, and rugosity, were averaged for a grid of 50 m within the transect.

A spatial error model was then applied to find whether and how the canopy height
change depends on the prior-hurricane covariables including topography. The spatial
error model [35] considers the spatial autocorrelation of error of a linear regression model
as follows:

y = xβ + u u = λWu + ε

where y is the dependent variable represented as an n × 1 matrix (n, number of cases in
the dataset), x is one or multiple (m) independent variables represented by an n × p matrix
with p = m + 1, β is a p × 1 coefficient matrix to be estimated, and u is an n × 1 spatial error
matrix. W is an n × n weight matrix determined by the neighborhood structure, λ is the
spatial autocorrelation coefficient, and ε is the normal i.i.d. (independent and identically
distributed) residual.

Before proceeding, we averaged all these variables over a 50 m × 50 m grid. We then
divided canopy height change by the canopy height prior to the hurricanes to obtain the
relative height change (∆hcr), calculated a function of aspect as

f (α) = − cos(α − π/4)

with α as the aspect angle, and normalized rugosity (r), elevation (Z), and canopy height (h)
to [0,1] range. Tree cover is already in the range, and cosine of aspect is in the range from
−1 to 1. We then regressed spatially the relative canopy height change on the normalized
covariates with the spatial error model. The spatial correlation of errors was defined within
eight nearest neighboring grid cells. Variables were selected with the ANOVA model

glihtdata.gsfc.nasa.gov/
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comparison. Data preparation and analyses were performed in ArcGIS (ESRI, Redlands,
CA, USA) and R [36]. Error assessment was performed using R2 for the multivariate
regression and the spatial error model and using the residual deviance versus the null-
model (model with intercept only) deviance for the quasibinomial regression.

3. Results
3.1. Mean Change in Stem Height at Plot Level

The mean height change in the 15 plots showed that the reduction (negative change)
prevailed (Figure 3) over the stimulated growth by the pulse rainfall brought by the
hurricanes, 11 out of 15 plots exhibiting a reduction in mean stem height and 7 of them
being significant (t-test at α = 0.05). The average mean height change at plot level was
−0.14 m with a standard deviation of 0.22 m. The regression of the mean height change on
topography, stem density, mean stem diameter, mean stem height, and standard deviation
of the stem height measured before the hurricanes resulted in the equation via a stepwise
selection of independent variables as follows:

∆h = −0.27(±0.112)− 0.264(±0.1)sh + 0.094(±0.022)D (1)

where ∆h is the mean stem height change with negative values for damage, sh is the stan-
dard deviation of stem height within the plot, and D is the mean stem diameter. Standard
errors of the estimated parameters are shown in the parentheses. The regression yielded an
R2 of 0.59, and all the coefficients and the F-statistic were significant (p-value < 0.05). sh is
a measurement of canopy unevenness connecting to the surface roughness. The equation
implies that the roughness of the canopy tends to bring more reduction in stem height,
whereas plot with trees having greater stem diameters tends to resist the reduction in
stem height. Pooling the individual stems from all the 15 plots, we found a significant
correlation coefficient of 0.157 between the height change and the stem diameter before the
hurricanes, which means the larger the stem diameter, the less reduction was observed in
height. Positive changes in plots 04, 08, 43, and 44 showed that the post-hurricane growth
benefited from moisture brought by the storms exceeded the minor hurricane damage in
these plots (Figure 3).
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3.2. Lost and Damaged Stems

The number of affected stems (Figure 4), including the categories of “Lost” and
“Damaged”, showed a wide range of variation with the mean ± standard deviation as
4 ± 3.7 for the number of lost stems and as 4.6 ± 4.1 for the number of damaged stems. The
mean of the lost plus damaged stems was 8.6 (±4.9). The proportion of lost or damaged
stems, that is, the number of lost or damaged stems divided by the total number of stems
of the plot (Figure 4 lower panel), showed that the mean ± standard deviation of the
fraction of the lost stem and that of the damaged stem were 2.2% ± 1.7% and 2.3% ± 1.9%,
respectively. On average, 4.5% of plant stems were affected by the hurricanes.
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After regressing the fraction of lost stems in the plots on pertinent covariates including
plot topography, the density of stems, the mean and standard deviation of stem height,
and mean stem diameter with assumed quasibinomial (logit) distribution, we obtained the
following equation after stepwise selection of the covariates:

pLost = −2.87(±0.21)− 1.38(±0.45)d (2)

where pLost is the fraction of lost stems, and d is the stem density. The regression yielded
residual deviance Equation (2) of 8.56, in comparison with the null deviance (the null model
with intercept only) of 16.88. All the coefficients were significant (p-value < 0.01). Therefore,
the proportion of lost stems decreased significantly with the stem density. Similarly, the
regression of the fraction of damaged stems gave,

pDamage = −6.79(±1.36) + 1.12(±0.33)sh + 0.0082(±0.0062)Elev (3)

where pDamage is the fraction of damaged stems and Elev is the elevation at the plot centroid.
The regression had residual deviance of 22.68, in comparison with the null deviance of 46.4.
All coefficients were significant at α = 0.01, except the coefficient in front of Elev which had
a p-value of 0.21. Therefore, greater canopy unevenness and higher elevation were more
likely to result in more damage.

3.3. Impact at Species Level

Table 2 lists the species names with stems either lost or damaged (affected), the num-
ber of stems for each affected species in the site, the number of affected, and the percent
of affected calculated as the number of affected divided by the number of stems. One
of the species is marked as an unknown plant, and two of them have only their genus
known. Due to the lack of complete information about the structural and functional traits,
we could not analyze the relationship between impact and traits. However, the most
affected species such as Gymnanthes lucida Sw., Eugenia foetida Pers., Bucida buceras L.,
Croton lucidus L., Thouinia striata, and Guaiacum sanctum L. are recorded as hardwood
species (http://tropical.theferns.info/, accessed on 8 June 2021). The six species consti-
tuted more than 52% of all the affected stems. From the global wood density database [37],
we found the wood density of 10 major species including Bursera simaruba (L.) Sarg.,
Cocoloba diversifolia Jacq., Exostema caribaeum (Jacq.) Schult., Guaiacum officinale L.,
Guaiacum sanctum L., Gymnathes lucida Sw., Leucaena leucocephala (Lam.) de Wit, Pictetia
aculeata (Vahl) Urb., Swietenia mahagonia (L.) Jacq., and Thouinia striata. However, the per-
cent of affected (fourth column in Table 2) did not have a significant correlation with the
wood density of the 10 species. In the study of the impact of Hurricane Georges on the
Guánica dry forest in 1998, van Bloem and Murphy [38] also found wood density did not
play a significant role in resisting hurricane damage. However, they found the pioneer
species in the forest were damaged more.

Table 2. The affected species (encountering lost or/and damaged stem), number of stems, number of
affected, and proportion of affected in the 15 plots at NEON Guánica dry forest site.

Scientific Name # Stems # Affected % Affected

Gymnanthes lucida Sw. 1714 18 1.1

Croton lucidus L. 537 15 2.8

Bucida buceras L. 610 13 2.1

Eugenia foetida Pers. 997 8 0.8

Thouinia striata Radlk. var. portoricensis
(Radlk.) Votava & Alain 490 8 1.6

Leucaena leucocephala (Lam.) de Wit 487 6 1.2

http://tropical.theferns.info/


Remote Sens. 2021, 13, 2262 10 of 16

Table 2. Cont.

Scientific Name # Stems # Affected % Affected

Pisonia albida (Heimerl) Britton ex Standl. 541 6 1.1

Pithecellobium unguis-cati (L.) Benth. 171 6 3.5

Bursera simaruba (L.) Sarg. 305 5 1.6

Guaiacum sanctum L. 181 5 2.8

Coccoloba microstachya Willd. 223 3 1.3

Acacia farnesiana (L.) Willd. 82 2 2.4

Bunchosia glandulosa (Cav.) DC. 39 2 5.1

Capparis flexuosa (L.) L. 54 2 3.7

Colubrina arborescens (Mill.) Sarg. 29 2 6.9

Croton betulinus Vahl 6 2 33.3

Guaiacum officinale L. 262 2 0.8

Pictetia aculeata (Vahl) Urb. 173 2 1.2

Poitea florida (Vahl) Lavin 42 2 4.8

Rochefortia acanthophora (DC.) Griseb. 25 2 8.0

Schaefferia frutescens Jacq. 58 2 3.4

Swietenia mahagoni (L.) Jacq. 562 2 0.4

Capparis hastata Jacq. 112 1 0.9

Capparis indica (L.) Druce 22 1 4.5

Coccoloba diversifolia Jacq. 207 1 0.5

Comocladia dodonaea (L.) Urb. 35 1 2.9

Croton flavens L. 7 1 14.3

Croton sp. 40 1 2.5

Eugenia xerophytica Britton 30 1 3.3

Exostema caribaeum (Jacq.) Schult. 66 1 1.5

Guapira obtusata (Jacq.) Little 10 1 10.0

Guettarda krugii Urb. 122 1 0.8

Guettarda sp. 32 1 3.1

Lantana exarata Urb. & Ekman 81 1 1.2

Reynosia uncinata Urb. 39 1 2.6

Unknown plant 526 1 0.2

3.4. LiDAR-Derived Canopy Height Change along the Transect

Averaging the pixels across the width direction of the transect, we found that canopy
height change was correlated with both prior-hurricane canopy height and tree cover.
Canopy height change was mostly negative in the lower left of the transect with relatively
lower tree cover and average canopy height but positive in part of the upper-right section
with greater tree cover and average canopy height (Figure 5a,b). On average, the canopy
height decreased by 0.23 m, in comparison with a 0.14 m decrease in stem height from plot
measurement, probably because ground stem height only measures the top height of the
stems, whereas LiDAR-derived canopy height includes both treetop and canopy foliage.
At 50 m × 50 m grid scale, spatial regression of the relative canopy height change (∆hcr),



Remote Sens. 2021, 13, 2262 11 of 16

i.e., canopy height change divided by the canopy height prior to the hurricanes, on the
normalized covariates resulted in the following Equation:

∆hcr = −0.62 + 0.39 C + 0.89hc − 0.62hc
2 − 0.019 f (α)− 0.047 r (4)

where C and hc are prior-hurricane tree cover and normalized canopy height, respectively,
f (α) = − cos(α − π/4) with α as the aspect angle, and r is normalized rugosity. The model
had a regression standard error of 0.03, in comparison with the range of relative canopy
height as [–0.6, 0.17]. All the coefficients had p-values less than 0.01. The spatial error
model did not provide a statistic similar to that of R2; however, we calculated a similar
value of 0.81 based on the definition of the ordinary linear model (Figure 5d). The spatial
autocorrelation coefficient, λ, was estimated as 0.79. The regression showed that ∆hcr
increased with C and hc in a second-order (squared) fashion; however, decreases with
r derived from the digital surface model. As negative ∆hcr indicates decreased canopy
height or damaged canopy, the result implied that canopy height reduction was resisted
by the tree cover, canopy height when the canopy was low or moderate, but promoted by
the rugosity, canopy height when the canopy was high. The aspect function f (α) made
southwest as +1 and northeast as −1, so that the result showed that slopes facing southwest
experienced more damage than slopes facing northeast, using Equation (4).
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derived from the G-LiHT LiDAR data, indicating the status before the hurricanes. The predicted versus monitored relative
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4. Discussion

Instead of using the individual-level tree traits to explain the hurricane damage,
we integrated the NEON ground observations of vegetation structure and the airborne
LiDAR-derived continuous structural information, which allowed us to use forest stands
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as base units to explore the underlying mechanisms of ecosystem resistance to hurricanes.
Our analyses of the response of the tropical dry forest in Guánica to major hurricanes
highlighted the importance of stand-level parameters such as stem density and rugosity. At
the stand level, trees function interactively to resist wind damage. The results are aligned
with recent modeling studies reporting that stand-level characteristics play more important
roles in wind damage to forests, compared to the individual-level characteristics [11,18].

At the stand level, stem density is one of the primary parameters as seen in Equation (2).
A forest can be viewed as a windbreak system. In general, the denser the stems are,
the denser the canopy, and the more support among trees with the interaction of their
branches and leaves in the wind. The bending of stems and branches and friction among
leaves dissipate the wind energy. Stem density is especially important for tropical dry
forests with small trees to resist winds. The NEON Guánica dry forest has a mean density
of 3990 ± 2250 stems ha−1 in the 15 plots, whereas the estimated mean density for the
tropical moist forest is around 800 globally [39] and 2278 ha−1 for a moist forest in the same
island [40]. Even for a forest with large trees and low apparent density, two or multiple
trees growing together can support each other [41]. For a stand with low density, wind
speed inside the canopy will be higher than that of a denser stand [11], thus leading to
more severe wind damage.

Mean stem diameter is another essential parameter to resist forest height reduction
as seen in Equation (1). Wind force at the canopy constitutes a turning moment to snap
or uproot trees. In the Amazon forest, the strength to sustain a large turning moment
is positively correlated to the DBH of the experimental trees [11,42]. Trees with larger
DBH are more resistant to snapping or uprooting. A recent study of tree adaptation and
acclimation to wind based on long-term windthrow datasets also revealed that taper or
lower height:diameter ratio was related to reduced wind damage [12,19]. The forest risk
model ForestGALES [43] indicates that critical wind speed to rupture stems is proportional
to the order of 3/2 of stem diameter and to the stem density, aligned with our findings in
the tropical dry forest as seen in Equations (1) and (2).

The standard deviation of stem heights is an index for unevenness of the canopy height
reflecting surface roughness or rugosity as derived from the digital surface model (Figure 5).
We found that the rugosity is important in explaining the reduction of stem height or canopy
height (Equations (1) and (4)) and the proportion of damaged stems (Equation (3)) during
major hurricanes. Storm intensity increases with surface roughness [44], which implies
that higher surface roughness tends to bring more damage. More surface roughness makes
a boundary layer thinner [45] so that storm winds can traverse the forest with a faster
speed at the lower height to bring more damage. Hence, a forest with a uniform stem
height is resistant to hurricane damage. Surface roughness can be enhanced by forests
with emergent high trees or exceedingly low stem density with heterogeneous height
arrangements, which may create gaps. During strong winds, emergent high trees might be
knocked down first due to the negative correlation between critical wind speed to topple
trees and tree height, and then greater wind penetration into the stand through the newly
created gaps might induce higher wind load to the remaining trees [11]. Therefore, more
damages are expected as gaps propagate. As to a specific case of plantations, in general,
they have uniform stem height and simple structure. When the storm wind is lower than
the critical wind speed to topple trees, plantations are expected to resist wind damage due
to low surface roughness. However, due to their simple structure, plantation trees have
similar critical wind speed to topple trees. Therefore, when the wind exceeds the critical
wind speed to topple plantation trees, few trees could resist the winds, and the structure
might collapse [20].

Topography-related factors, such as elevation, topographic position, and aspect, reflect
the exposure of forests to different wind speeds during storms. The higher the elevation,
the stronger the hurricane winds encountered, thus more damage, e.g., Equation (3) [46].
The Guánica dry forest, located at the left side of hurricanes Irma and Maria, which
spun counterclockwise and moved toward the northwest, might encounter the strongest
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winds coming from the west to southwest, and our results showed that more damages
(Equation (4)) were associated with areas facing southwest.

Our model for LiDAR-detected change in canopy height along a transect Equation (4)
basically confirms the finding with the ground plot measurements in Equations (1)–(3).
Tree cover may be associated with stem density if the crown size is relatively uniform,
which is approximately the case in this dry forest with dense stems of small trees. Higher
tree cover might imply higher stem density and fewer gaps so that trees help each other to
resist damage. Higher tree cover might also indicate a higher leaf area index (LAI), whereas
gust wind is negatively related to LAI [11,47]. Therefore, a larger tree cover might weaken
gust wind and reduce wind damage. Canopy rugosity derived from DSM Equation (4)
and stem height unevenness Equations (1) and (3) both tend to enlarge wind damage. We
found a significant Pearson’s correlation coefficient of 0.65 between stem diameter and
stem height in the NEON ground measurements. Hence, a greater mean canopy height in
the low and moderate range may indicate a greater mean stem diameter. We also found a
significant correlation of 0.63 between tree cover and mean canopy height derived from
LiDAR. Therefore, a higher canopy may also mean greater tree cover to resist wind damage.
Mean canopy height is negatively correlated to the gust wind profile [11,47] and thus
tends to protect the emergent trees, which agrees with the role of mean canopy height in
Equation (4).

On average, 4.5% of stems in the Guánica forest were affected by the hurricanes in
2017, similar to the impact of Hurricane Gilbert on the subtropical dry forest in Jamaica
in 1988 with 5% structural damage [48] and that of Hurricane David on a dry forest in
Dominica in 1979 with 4% [49]. Hurricane Georges in 1998 caused 12.4% structural damage
to the Guánica forest [38], probably because the path of Georges was much closer to the
forest than the hurricanes in 2017; however, the 2% of lost stems in this study is close to
the 2% mortality nine months after Hurricane Georges [30]. In the Guánica dry forest, the
conspecific percentage of affected stems was on average 2.7% when only the known species
having at least 10 stems were counted (Table 2).

Puerto Rico experienced a severe drought in 2014–2016, and the large pulse rain
brought by the major hurricanes in 2017 might release the drought stress (e.g., positive
height change in Figure 3) and help the recovery of the dry forest [24]. Climate models
predict intensified climate variability [50,51], and tropical dry forests might face increasing
extreme climate events [52]. While tropical dry forests have adapted to moisture-deficit
environments and might show resistance to further drought, a recent review still pointed
out that altered species distribution and ecosystem processes are likely in the altered rainfall
regime [8]. A great challenge to be addressed by future studies would be the resistance and
resilience of tropical dry forests in response to alternating severe drought and major storms.

5. Conclusions

Tropical dry forests are vulnerable to hurricane disturbances and function differently
from tropical moist or wet forests in their response, resistance, and recovery after the
disturbances. As individuals’ functional traits prevail in the literature on hurricanes’ impact,
we hereby addressed it at forest stand level and tried to answer how trees in tropical dry
forest work together to combat the wind damage. To achieve this, we integrated the NEON
ground observations of ecosystem structure with the airborne-LiDAR-derived continuous
structural information, which allowed us to use forest stand as a base unit to explore the
underlying mechanisms of ecosystem resistance of the NEON Guánica dry forest to the two
major hurricanes of Irma and Maria in 2017. Our results highlighted the mutual supports
among trees during storms and the important roles of stand-level collective parameters
such as stem density and rugosity in resisting wind damages to the tropical dry forest. At
the stand level, trees function interactively to resist wind damage, especially in the case
of tropical dry forests with low profile but dense canopy. The conclusion on the tropical
dry forest reemphasizes the finding from recent modeling studies, namely, that stand-
level characteristics are more essential in explaining wind damage to forests, compared to
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the individual-level characteristics. Coupling remote sensing with ground observations
provides an effective and promising approach to advancing our mechanistic understanding
of ecosystem responses to disturbances.
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